Skip to contents

audit_seq() and audit_total_n() summarize the results of functions that end on _seq and _total_n, respectively.

See below for a record of such functions. Go to the documentation of any of them to learn about the way its output is processed by audit_seq() or audit_total_n().

Usage

audit_seq(data)

audit_total_n(data)

Arguments

data

A data frame that inherits one of the classes named below.

Value

A tibble (data frame) with test summary statistics.

Details

All functions named below that end on _seq were made by function_map_seq(). All that end on _total_n were made by function_map_total_n().

Before audit_seq()

FunctionClass
grim_map_seq()"scr_grim_map_seq"
grimmer_map_seq()"scr_grimmer_map_seq"
debit_map_seq()"scr_debit_map_seq"

Before audit_total_n()

FunctionClass
grim_map_total_n()"scr_grim_map_total_n"
grimmer_map_total_n()"scr_grimmer_map_total_n"
debit_map_total_n()"scr_debit_map_total_n"

Examples

# For GRIM-testing with dispersed inputs:
out <- pigs1 %>%
  grim_map_seq() %>%
  audit_seq()
out
#> # A tibble: 8 × 12
#>   x         n consistency hits_total hits_x hits_n diff_x diff_x_up diff_x_down
#>   <chr> <int> <lgl>            <int>  <int>  <int>  <int>     <int>       <int>
#> 1 4.74     25 FALSE                4      2      2      2         2          -2
#> 2 5.23     29 FALSE                6      3      3      1         1          -2
#> 3 2.57     24 FALSE                6      3      3      1         1          -3
#> 4 6.77     27 FALSE                7      3      4      1         1          -3
#> 5 7.01     29 FALSE                3      3      0      1         2          -1
#> 6 3.14     27 FALSE                6      3      3      1         1          -3
#> 7 6.89     31 FALSE                8      4      4      1         1          -2
#> 8 0.24     28 FALSE                6      3      3      1         1          -3
#> # ℹ 3 more variables: diff_n <int>, diff_n_up <int>, diff_n_down <int>

# Follow up on `audit_seq()` or
# `audit_total_n()` with `audit()`:
audit(out)
#> # A tibble: 9 × 8
#>   term         mean    sd median   min   max na_count na_rate
#>   <chr>       <dbl> <dbl>  <dbl> <dbl> <dbl>    <dbl>   <dbl>
#> 1 hits_total   5.75 1.58     6       3     8        0   0    
#> 2 hits_x       3    0.535    3       2     4        0   0    
#> 3 hits_n       2.75 1.28     3       0     4        0   0    
#> 4 diff_x       1.12 0.354    1       1     2        0   0    
#> 5 diff_x_up    1.25 0.463    1       1     2        0   0    
#> 6 diff_x_down -2.38 0.744   -2.5    -3    -1        0   0    
#> 7 diff_n       1.43 0.787    1       1     3        1   0.125
#> 8 diff_n_up    2.29 1.38     2       1     4        1   0.125
#> 9 diff_n_down -2.57 1.40    -3      -5    -1        1   0.125