grim_map_seq()
performs GRIM-testing with values surrounding
the input values. This provides an easy and powerful way to assess whether
small errors in computing or reporting may be responsible for GRIM
inconsistencies in published statistics.
Call audit_seq()
on the results for summary statistics.
Usage
grim_map_seq(
data,
x = NULL,
n = NULL,
var = Inf,
dispersion = 1:5,
out_min = "auto",
out_max = NULL,
include_reported = FALSE,
include_consistent = FALSE,
...
)
Arguments
- data
A data frame that
grim_map()
could take.- x, n
Optionally, specify these arguments as column names in
data
.- var
String. Names of the columns that will be dispersed. Default is
c("x", "n")
.- dispersion
Numeric. Sequence with steps up and down from the
var
inputs. It will be adjusted to these values' decimal levels. For example, with a reported8.34
, the step size is0.01
. Default is1:5
, for five steps up and down.- out_min, out_max
If specified, output will be restricted so that it's not below
out_min
or aboveout_max
. Defaults are"auto"
forout_min
, i.e., a minimum of one decimal unit above zero; andNULL
forout_max
, i.e., no maximum.- include_reported
Logical. Should the reported values themselves be included in the sequences originating from them? Default is
FALSE
because this might be redundant and bias the results.- include_consistent
Logical. Should the function also process consistent cases (from among those reported), not just inconsistent ones? Default is
FALSE
because the focus should be on clarifying inconsistencies.- ...
Arguments passed down to
grim_map()
.
Summaries with audit_seq()
You can call audit_seq()
following
grim_map_seq()
. It will return a data frame with these columns:
x
andn
are the original inputs, tested forconsistency
here.hits_total
is the total number of GRIM-consistent value sets found within the specifieddispersion
range.hits_x
is the number of GRIM-consistent value sets found by varyingx
.Accordingly with
n
andhits_n
.(Note that any consistent reported cases will be counted by the
hits_*
columns if bothinclude_reported
andinclude_consistent
are set toTRUE
.)diff_x
reports the absolute difference betweenx
and the next consistent dispersed value (in dispersion steps, not the actual numeric difference).diff_x_up
anddiff_x_down
report the difference to the next higher or lower consistent value, respectively.diff_n
,diff_n_up
, anddiff_n_down
do the same forn
.
Call audit()
following audit_seq()
to summarize results even further.
It's mostly self-explaining, but na_count
and na_rate
are the number
and rate of times that a difference could not be computed because of a lack
of corresponding hits within the dispersion
range.
Examples
# `grim_map_seq()` can take any input
# that `grim_map()` can take:
pigs1
#> # A tibble: 12 × 2
#> x n
#> <chr> <dbl>
#> 1 7.22 32
#> 2 4.74 25
#> 3 5.23 29
#> 4 2.57 24
#> 5 6.77 27
#> 6 2.68 28
#> 7 7.01 29
#> 8 7.38 26
#> 9 3.14 27
#> 10 6.89 31
#> 11 5.00 25
#> 12 0.24 28
# All the results:
out <- grim_map_seq(pigs1, include_consistent = TRUE)
out
#> # A tibble: 240 × 7
#> x n consistency probability diff_var case var
#> <chr> <int> <lgl> <dbl> <int> <int> <chr>
#> 1 7.17 32 FALSE 0.68 -5 1 x
#> 2 7.18 32 FALSE 0.68 -4 1 x
#> 3 7.19 32 TRUE 0.68 -3 1 x
#> 4 7.20 32 FALSE 0.68 -2 1 x
#> 5 7.21 32 FALSE 0.68 -1 1 x
#> 6 7.23 32 FALSE 0.68 1 1 x
#> 7 7.24 32 FALSE 0.68 2 1 x
#> 8 7.25 32 TRUE 0.68 3 1 x
#> 9 7.26 32 FALSE 0.68 4 1 x
#> 10 7.27 32 FALSE 0.68 5 1 x
#> # ℹ 230 more rows
# Case-wise summaries with `audit_seq()`
# can be more important than the raw results:
out %>%
audit_seq()
#> # A tibble: 12 × 12
#> x n consistency hits_total hits_x hits_n diff_x diff_x_up diff_x_down
#> <chr> <int> <lgl> <int> <int> <int> <int> <int> <int>
#> 1 7.22 32 TRUE 5 2 3 3 3 -3
#> 2 4.74 25 FALSE 4 2 2 2 2 -2
#> 3 5.23 29 FALSE 6 3 3 1 1 -2
#> 4 2.57 24 FALSE 6 3 3 1 1 -3
#> 5 6.77 27 FALSE 7 3 4 1 1 -3
#> 6 2.68 28 TRUE 4 2 2 3 3 -4
#> 7 7.01 29 FALSE 3 3 0 1 2 -1
#> 8 7.38 26 TRUE 5 2 3 3 4 -3
#> 9 3.14 27 FALSE 6 3 3 1 1 -3
#> 10 6.89 31 FALSE 8 4 4 1 1 -2
#> 11 5.00 25 TRUE 12 2 10 4 4 -4
#> 12 0.24 28 FALSE 6 3 3 1 1 -3
#> # ℹ 3 more variables: diff_n <int>, diff_n_up <int>, diff_n_down <int>