Call debit_map() to use DEBIT on multiple combinations of
mean, sample standard deviation, and sample size of binary distributions.
Mapping function for debit().
For summary statistics, call audit() on the results.
Usage
debit_map(
  data,
  x = NULL,
  sd = NULL,
  n = NULL,
  rounding = "up_or_down",
  threshold = 5,
  symmetric = FALSE,
  show_rec = TRUE,
  extra = Inf
)Arguments
- data
 Data frame.
- x, sd, n
 Optionally, specify these arguments as column names in
data.- rounding, threshold, symmetric
 Arguments passed on to
debit(), with the same defaults.- show_rec
 If set to
FALSE, the resulting tibble only includes the columnsx,sd,n, andconsistency. Default isTRUE.- extra
 Not currently used.
Value
A tibble with (at least) these columns –
x,sd,n: the inputs.consistency: DEBIT consistency ofx,sd, andn.By default, the tibble also includes the rounding method, boundary values, and information about the boundary values being inclusive or not. The tibble has the
scr_debit_mapclass, which is recognized by theaudit()generic.
Summaries with audit()
    There is an S3 method for the
audit() generic, so you can call audit() following debit_map().
It returns a tibble with these columns —
incons_cases: the number of DEBIT-inconsistent cases.all_cases: the total number of cases.incons_rate: the rate of inconsistent cases.mean_x: the meanx(mean) value.mean_sd: the meansdvalue.distinct_n: the number of distinctnvalues.
References
Heathers, James A. J., and Brown, Nicholas J. L. 2019. DEBIT: A Simple Consistency Test For Binary Data. https://osf.io/5vb3u/.
Examples
# Call `debit_map()` on binary summary
# data such as these:
pigs3
#> # A tibble: 7 × 3
#>   x     sd        n
#>   <chr> <chr> <dbl>
#> 1 0.53  0.50   1683
#> 2 0.44  0.50   1683
#> 3 0.77  0.42   1683
#> 4 0.19  0.35   1683
#> 5 0.34  0.47   1683
#> 6 0.93  0.25   1683
#> 7 0.12  0.33   1683
# The `consistency` column shows
# whether the values to its left
# are DEBIT-consistent:
pigs3 %>%
  debit_map()
#> # A tibble: 7 × 11
#>   x     sd        n consistency rounding   sd_lower sd_incl_lower sd_upper
#>   <chr> <chr> <int> <lgl>       <chr>         <dbl> <lgl>            <dbl>
#> 1 0.53  0.50   1683 TRUE        up_or_down    0.495 TRUE             0.505
#> 2 0.44  0.50   1683 TRUE        up_or_down    0.495 TRUE             0.505
#> 3 0.77  0.42   1683 TRUE        up_or_down    0.415 TRUE             0.425
#> 4 0.19  0.35   1683 FALSE       up_or_down    0.345 TRUE             0.355
#> 5 0.34  0.47   1683 TRUE        up_or_down    0.465 TRUE             0.475
#> 6 0.93  0.25   1683 TRUE        up_or_down    0.245 TRUE             0.255
#> 7 0.12  0.33   1683 TRUE        up_or_down    0.325 TRUE             0.335
#> # ℹ 3 more variables: sd_incl_upper <lgl>, x_lower <dbl>, x_upper <dbl>
# Get test summaries with `audit()`:
pigs3 %>%
  debit_map() %>%
  audit()
#> # A tibble: 1 × 6
#>   incons_cases all_cases incons_rate mean_x mean_sd distinct_n
#>          <int>     <int>       <dbl>  <dbl>   <dbl>      <int>
#> 1            1         7       0.143  0.474   0.403          1