Call debit_map()
to use DEBIT on multiple combinations of
mean, sample standard deviation, and sample size of binary distributions.
Mapping function for debit()
.
For summary statistics, call audit()
on the results.
Usage
debit_map(
data,
x = NULL,
sd = NULL,
n = NULL,
rounding = "up_or_down",
threshold = 5,
symmetric = FALSE,
show_rec = TRUE,
extra = Inf
)
Arguments
- data
Data frame.
- x, sd, n
Optionally, specify these arguments as column names in
data
.- rounding, threshold, symmetric
Arguments passed on to
debit()
, with the same defaults.- show_rec
If set to
FALSE
, the resulting tibble only includes the columnsx
,sd
,n
, andconsistency
. Default isTRUE
.- extra
Not currently used.
Value
A tibble with (at least) these columns –
x
,sd
,n
: the inputs.consistency
: DEBIT consistency ofx
,sd
, andn
.By default, the tibble also includes the rounding method, boundary values, and information about the boundary values being inclusive or not. The tibble has the
scr_debit_map
class, which is recognized by theaudit()
generic.
Summaries with audit()
There is an S3 method for the
audit()
generic, so you can call audit()
following debit_map()
.
It returns a tibble with these columns —
incons_cases
: the number of DEBIT-inconsistent cases.all_cases
: the total number of cases.incons_rate
: the rate of inconsistent cases.mean_x
: the meanx
(mean) value.mean_sd
: the meansd
value.distinct_n
: the number of distinctn
values.
References
Heathers, James A. J., and Brown, Nicholas J. L. 2019. DEBIT: A Simple Consistency Test For Binary Data. https://osf.io/5vb3u/.
Examples
# Call `debit_map()` on binary summary
# data such as these:
pigs3
#> # A tibble: 7 × 3
#> x sd n
#> <chr> <chr> <dbl>
#> 1 0.53 0.50 1683
#> 2 0.44 0.50 1683
#> 3 0.77 0.42 1683
#> 4 0.19 0.35 1683
#> 5 0.34 0.47 1683
#> 6 0.93 0.25 1683
#> 7 0.12 0.33 1683
# The `consistency` column shows
# whether the values to its left
# are DEBIT-consistent:
pigs3 %>%
debit_map()
#> # A tibble: 7 × 11
#> x sd n consistency rounding sd_lower sd_incl_lower sd_upper
#> <chr> <chr> <int> <lgl> <chr> <dbl> <lgl> <dbl>
#> 1 0.53 0.50 1683 TRUE up_or_down 0.495 TRUE 0.505
#> 2 0.44 0.50 1683 TRUE up_or_down 0.495 TRUE 0.505
#> 3 0.77 0.42 1683 TRUE up_or_down 0.415 TRUE 0.425
#> 4 0.19 0.35 1683 FALSE up_or_down 0.345 TRUE 0.355
#> 5 0.34 0.47 1683 TRUE up_or_down 0.465 TRUE 0.475
#> 6 0.93 0.25 1683 TRUE up_or_down 0.245 TRUE 0.255
#> 7 0.12 0.33 1683 TRUE up_or_down 0.325 TRUE 0.335
#> # ℹ 3 more variables: sd_incl_upper <lgl>, x_lower <dbl>, x_upper <dbl>
# Get test summaries with `audit()`:
pigs3 %>%
debit_map() %>%
audit()
#> # A tibble: 1 × 6
#> incons_cases all_cases incons_rate mean_x mean_sd distinct_n
#> <int> <int> <dbl> <dbl> <dbl> <int>
#> 1 1 7 0.143 0.474 0.403 1